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Abstract

The US. Army Research Laboratory (ARL) is interested in applying
state-of-the-art computational tools to the study of projectile aerodynamics at
angle of attack and moderate Mach number. The WIND flow solver has been
used to study the aerodynamics of two missile configurations. Computations
have been done for several turbulence models. Numerical results are compared
with experimental data for body surface pressures, flow field pitot pressures, and
body loads.
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1. Introduction

Researchers in computational fluid dynamics at the US. Army Research
Laboratory (ARL) are interested in investigating a wide array of complex
fluid-flow problems. These problems include flow around complex bodies, flow
at moderate and high Mach number, and flow at moderate to high angles of
attack.

A recent international study [1] investigated the ability of computational fluid
dynamic techniques to predict the flow field for missile bodies at significant
angles of attack for transonic and supersonic velocities. The current research is
an extension of that effort to include finned-missile configurations. Preliminary
results of this current study focused on the ability to incorporate advanced grid
generation technology with the WIND flow-field capability [2]. Reference [2]
reported how readily WIND could be adapted for use with complex flow
problems and for use in conjunction with other state-of-the-art software. The
focus of the work was on the methodology and practical aspects of incorporating
WIND as a tool of computational researchers.

This report concludes this study and seeks to validate the numerical results
obtained using WIND with experimental data. The study considers the
application of WIND 1.0 to predict the flow fields for two different missile
configurations at angles of attack from 14° to 40° and at Mach numbers near 2.5.
The generation of grids for WIND using the GridPro package is briefly reviewed,
and results for different turbulence models are presented. The comparisons
include surface-pressure measurements, outer flow-field pitot-pressure
measurements, and load calculations.

2. Missile Configurations

Two missile configurations were examined in this study. Both missiles consisted
of a 3-cal. nose cone and a 10-cal. cylindrical body. Each missile had four fins,
with symmetry about the pitch plane. The specific fin geometry and placement
is shown in Figures 1 and 2.

Missile 1 was studied at roll angles of 0° and 45°, Mach 2.5, and angle of attack
14° with a Reynolds number of 1.12 x 106. Missile 2 was studied at a roll angle of
45°, Mach 1.6 and 2.7, and angle of attack 40° with a Reynolds number of 250,000.




Figure 1. Missile 1 configuration.

Figure 2. Missile 2 configuration.

3. Grid Generation

Grids for the calculations were generated using the GridPro grid-generation
software package. The solution was assumed to be symmetric with respect to the
pitch plane, so the computational volume is effectively reduced by 50%. The
number of grid zones was determined by a utility that was used in an attempt to
optimize the grid for parallel processing. Table 1 lists the size and number of
blocks used for each of the configurations considered.




Table 1. Grid details.

Missile Blocks Grid Points
(in millions)
1 (0° roll) 35 4.1
1 (45° roll) 42 43
2 26 4.2

4. Boundary and Initial Conditions

In all cases, the freestream inflow condition was used on the inflow boundary,
the reflection boundary condition was used on the symmetry plane, the
freestream outflow condition was used on the outflow plane, and the viscous
wall condition was used on the viscous surfaces of the missile body.

For missile 1, the total freestream pressure was 20.628 psi and the total
freestream temperature was 554.4 R. For missile 2, the static freestream pressure
was 0.5637 psi and the static freestream temperature was 248.4 R. The WIND
default initialization was used to initialize the flow-field variables.

Runs were conducted using the following turbulence models: Baldwin-Lomax
(BL), Baldwin-Barth (BB), Spalart-Allmaras (SA), and Shear Stress Transport
(SST). The BL was run both with and without the option of choosing the
maximum number of grid points to search for Fma. For the former case,
maximum grid points 10 and 30 were studied (BL10 and BL30, respectively).

To avoid transient instabilities, the FIXER keyword was used. For missile 1, an
initial solution was calculated at a low angle of attack and this solution was used
as an initial solution for calculating the solution at a higher angle of attack. For
missile 2, the TVD factor was reduced to 1, the CFL crossflow factor was set to 1,
and the CFL number was reduced to 0.4.

5. Performance and Convergence Criterion

Runs conducted on Silicon Graphics Origin 2000 or Onyx platforms with
multiple processors typically used 8 processors, and converged solutions could
be obtained in 8-12 hr.

In each case, the residuals decreased by no more than 3 orders of magnitude over
several thousand cycles. To test convergence, solutions were monitored until
they were judged to be converged. In the case of missile 2, the loads on the body
were calculated using the LOADS keyword in WIND, and the solution was




considered to be converged when the loads had converged and remained steady
for a few hundred cycles.

6. Results

The primary quantity of interest for the study is the pressure coefficient at
different stations on the body and fins of both missiles. In addition, pitot-
pressure profiles of the outer flow field at several axial stations, and loads on the
body of missile 1 are considered. The computational data was interpolated to the
stations available in the experimental data sets. The computational results for
missile 1 at roll angles 0° and 45° were similar in terms of comparisons with
experimental results. For brevity, only the results for roll angle 0° are shown.

The pitot-pressure predictions for missile 1 at roll angle 0° and at axial station
X/D = 115 show similar results for the SA, BB, and SST models. The BL10
turbulence model predicts a smaller, more intense primary vortex that is more
like the experimental data in terms of qualitative features. In addition, this
model predicts a more structured solution near the body of the missile. The BL
turbulence model predicts a solution that more closely resembles the predictions
of the one- and two-equation models. The predictions are shown in Figures 3
and 4. An overall assessment suggests that most turbulence models tend to
smooth out the vortex features that are physically present.

Comparison of surface pressure predictions on the body of missile 1 at various
axial stations shows minimal varjation between the different turbulence models
and the experimental results, with the exception of the turbulence model BL10.
Sample comparisons are shown in Figures 5-7. The primary differences are
present near the point of separation on the missile body. These differences are
particularly evident at X/D station 5.5. In this instance, the BB and SST models
seem to give the best agreement with the experimental data.

In addition, Figure 6 shows the sensitivity of the Baldwin-Lomax model to the
limiting value for the search for Fmax. These comparisons suggest that an
optimal search value would be between 10 and 30 points off of the wall, with 30
giving results essentially equivalent to an unlimited search (the standard
Baldwin-Lomax) and 10 points being, perhaps, too few.

Comparisons of experimental calculated loads with the computations are shown
in Figure 8. The experimental results are shown for a wide range of angles of
attack. The computational results are shown at a single angle of attack. The
numerical results do not differ widely for the various turbulence models. The
numerical results underpredict the axial force by up to 10%. This is not
unexpected, as the axial force depends considerably on the viscous drag term
which is largely determined by the turbulence model.
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Figure 3. Pitot-pressure contours at X/D = 11.5 on missile 1 for turbulence models BL,
BL10, BL30, and SST compared to experiment.

In order to compare some results with experimental data, the loads on the body
were calculated as a function of time, and the computation was stopped when
the normal force was approximately steady and compared reasonably well with
the experimental result. Comparisons between experiment and computation are
shown in Figures 9-11. In addition, the geometry of the case is presented in

-Figure 11. Although the experimental data is somewhat sparse, the

computational result seems to give good agreement with the experimental data.

Figures 12 and 13 show three-dimensional views of predicted pitot pressures.
Also shown are lines showing the location of the vortex cores for missile 1 at
both roll angles. These visualizations were obtained using the PV3 package
developed by Dr. Robert Haimes of the Massachusetts Institute of Technology
(MIT).
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Figure 4. Pitot-pressure contours at X/D = 11.5 on missile 1 for turbulence models SA,
BB, SST, and BL10 compared to experiment.

7. Conclusions

The WIND flow solver has been demonstrated to be an efficient tool for
increasing and extending the predictive capability of researchers in
computational fluid dynamics. WIND has proven to be particularly useful for
flow problems with complex geometry although extreme flow conditions caused
some difficulties. For the cases studied, WIND gives good agreement with
experimental data both in the flow field and on the surface of the missile. WIND
is well suited for use in a high-performance computing environment such as that
in use at ARL.
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Figure 6. Cp vs. phi on the body of missile 1 for turbulence models BL, BL10, and
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Figure 7. Cp vs. phi on one wing of missile 1 for turbulence models SA, BB, and SST

compared to experiment.

Future work under consideration might involve the study of projectiles with
more complicated fin arrays or control jets, attempts to obtain valid solutions for

more extreme flow conditions, and unsteady projectile aerodynamics.
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Figure 8. Comparison of computational and experimental loads for missile 1.
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Figure 12. Pitot pressure and vortex core predictions on missile 1 at roll angle 0, SA
turbulence model. '

Figure 13. Pitot pressure and vortex core predictions for missile 1 at roll angle 45, SA
turbulence model.
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